Data Mining in Large Sets of Complex Data

The amount and the complexity of the data gathered by current enterprises are increasing at an exponential rate. Consequently, the analysis of Big Data is nowadays a central challenge in Computer Science, especially for complex data. For example, given a satellite image database containing tens of T...

Full description

Bibliographic Details
Main Authors: Cordeiro, Robson L. F. (Author), Faloutsos, Christos. (Author), Traina Jn͠ior, Caetano. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:SpringerBriefs in Computer Science,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4890-6
LEADER 03527nam a22004935i 4500
001 12657
003 DE-He213
005 20130727071727.0
007 cr nn 008mamaa
008 130125s2013 xxk| s |||| 0|eng d
020 # # |a 9781447148906  |9 978-1-4471-4890-6 
024 7 # |a 10.1007/978-1-4471-4890-6  |2 doi 
050 # 4 |a QA76.9.D343 
072 # 7 |a UNF  |2 bicssc 
072 # 7 |a UYQE  |2 bicssc 
072 # 7 |a COM021030  |2 bisacsh 
082 0 4 |a 006.312  |2 23 
100 1 # |a Cordeiro, Robson L. F.  |e author. 
245 1 0 |a Data Mining in Large Sets of Complex Data  |c by Robson L. F. Cordeiro, Christos Faloutsos, Caetano Traina Jn͠ior.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XI, 116 p. 37 illus., 25 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 # |a Preface -- Introduction -- Related Work and Concepts -- Clustering Methods for Moderate-to-High Dimensionality Data -- Halite -- BoW -- QMAS -- Conclusion. 
520 # # |a The amount and the complexity of the data gathered by current enterprises are increasing at an exponential rate. Consequently, the analysis of Big Data is nowadays a central challenge in Computer Science, especially for complex data. For example, given a satellite image database containing tens of Terabytes, how can we find regions aiming at identifying native rainforests, deforestation or reforestation? Can it be made automatically? Based on the work discussed in this book, the answers to both questions are a sound <U+001c>yes , and the results can be obtained in just minutes. In fact, results that used to require days or weeks of hard work from human specialists can now be obtained in minutes with high precision. Data Mining in Large Sets of Complex Data discusses new algorithms that take steps forward from traditional data mining (especially for clustering) by considering large, complex datasets. Usually, other works focus in one aspect, either data size or complexity. This work considers both: it enables mining complex data from high impact applications, such as breast cancer diagnosis, region classification in satellite images, assistance to climate change forecast, recommendation systems for the Web and social networks; the data are large in the Terabyte-scale, not in Giga as usual; and very accurate results are found in just minutes. Thus, it provides a crucial and well timed contribution for allowing the creation of real time applications that deal with Big Data of high complexity in which mining on the fly can make an immeasurable difference, such as supporting cancer diagnosis or detecting deforestation. 
650 # 0 |a Computer science. 
650 # 0 |a Database management. 
650 # 0 |a Data mining. 
650 1 4 |a Computer Science. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Database Management. 
700 1 # |a Faloutsos, Christos.  |e author. 
700 1 # |a Traina Jn͠ior, Caetano.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447148890 
830 # 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4890-6 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)