Imaging Spectroscopy for Scene Analysis

In contrast with trichromatic image sensors, imaging spectroscopy can capture the properties of the materials in a scene. This implies that scene analysis using imaging spectroscopy has the capacity to robustly encode material signatures, infer object composition and recover photometric parameters....

Full description

Bibliographic Details
Main Authors: Robles-Kelly, Antonio. (Author), Huynh, Cong Phuoc. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:Advances in Computer Vision and Pattern Recognition,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4652-0
LEADER 03819nam a22004815i 4500
001 12604
003 DE-He213
005 20130727060735.0
007 cr nn 008mamaa
008 121031s2013 xxk| s |||| 0|eng d
020 # # |a 9781447146520  |9 978-1-4471-4652-0 
024 7 # |a 10.1007/978-1-4471-4652-0  |2 doi 
050 # 4 |a Q337.5 
050 # 4 |a TK7882.P3 
072 # 7 |a UYQP  |2 bicssc 
072 # 7 |a COM016000  |2 bisacsh 
082 0 4 |a 006.4  |2 23 
100 1 # |a Robles-Kelly, Antonio.  |e author. 
245 1 0 |a Imaging Spectroscopy for Scene Analysis  |c by Antonio Robles-Kelly, Cong Phuoc Huynh.  |h [electronic resource] / 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVIII, 269 p. 76 illus., 59 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
505 0 # |a Introduction -- Spectral Image Acquisition -- Spectral Image Formation Process -- Reflectance Modelling -- Illuminant Power Spectrum -- Photometric Invariance -- Spectrum Representation -- Material Discovery -- Reflection Geometry -- Polarisation of Light -- Shape and Refractive Index from Polarisation. 
520 # # |a In contrast with trichromatic image sensors, imaging spectroscopy can capture the properties of the materials in a scene. This implies that scene analysis using imaging spectroscopy has the capacity to robustly encode material signatures, infer object composition and recover photometric parameters. This landmark text/reference presents a detailed analysis of spectral imaging, describing how it can be used in elegant and efficient ways for the purposes of material identification, object recognition and scene understanding. The opportunities and challenges of combining spatial and spectral information are explored in depth, as are a wide range of applications from surveillance and computational photography, to biosecurity and resource exploration. Topics and features: Discusses spectral image acquisition by hyperspectral cameras, and the process of spectral image formation Examines models of surface reflectance, the recovery of photometric invariants, and the estimation of the illuminant power spectrum from spectral imagery Describes spectrum representations for the interpolation of reflectance and radiance values, and the classification of spectra Reviews the use of imaging spectroscopy for material identification Explores the recovery of reflection geometry from image reflectance Investigates spectro-polarimetric imagery, and the recovery of object shape and material properties using polarimetric images captured from a single view An essential resource for researchers and graduate students of computer vision and pattern recognition, this comprehensive introduction to imaging spectroscopy for scene analysis will also be of great use to practitioners interested in shape analysis employing polarimetric imaging, and material recognition and classification using hyperspectral or multispectral data. 
650 # 0 |a Computer science. 
650 # 0 |a Computer vision. 
650 # 0 |a Optical pattern recognition. 
650 1 4 |a Computer Science. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 # |a Huynh, Cong Phuoc.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447146513 
830 # 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6586 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4652-0 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)