Multivariate Statistical Process Control Process Monitoring Methods and Applications /

� Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitor...

Full description

Bibliographic Details
Main Authors: Ge, Zhiqiang. (Author), Song, Zhihuan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: London : Springer London : Imprint: Springer, 2013.
Series:Advances in Industrial Control,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4513-4
LEADER 03155nam a22004335i 4500
001 12567
003 DE-He213
005 20130727055754.0
007 cr nn 008mamaa
008 121205s2013 xxk| s |||| 0|eng d
020 # # |a 9781447145134  |9 978-1-4471-4513-4 
024 7 # |a 10.1007/978-1-4471-4513-4  |2 doi 
050 # 4 |a TJ212-225 
072 # 7 |a TJFM  |2 bicssc 
072 # 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.8  |2 23 
100 1 # |a Ge, Zhiqiang.  |e author. 
245 1 0 |a Multivariate Statistical Process Control  |b Process Monitoring Methods and Applications /  |c by Zhiqiang Ge, Zhihuan Song.  |h [electronic resource] : 
264 # 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2013. 
300 # # |a XVIII, 193 p. 90 illus., 25 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Advances in Industrial Control,  |x 1430-9491 
505 0 # |a Introduction -- An Overview of Conventional MSPC Methods -- Non-Gaussian Process Monitoring -- Fault Reconstruction and Identification -- Nonlinear Process Monitoring: Part I -- Nonlinear Process Monitoring: Part 2 -- Time-varying Process Monitoring -- Multimode Process Monitoring: Part 1 -- Multimode Process Monitoring: Part 2 -- Dynamic Process Monitoring -- Probabilistic Process Monitoring -- Plant-wide Process Monitoring: Multiblock Method -- Reference -- Index. 
520 # # |a � Given their key position in the process control industry, process monitoring techniques have been extensively investigated by industrial practitioners and academic control researchers. Multivariate statistical process control (MSPC) is one of the most popular data-based methods for process monitoring and is widely used in various industrial areas. Effective routines for process monitoring can help operators run industrial processes efficiently at the same time as maintaining high product quality. Multivariate Statistical Process Control reviews the developments and improvements that have been made to MSPC over the last decade, and goes on to propose a series of new MSPC-based approaches for complex process monitoring. These new methods are demonstrated in several case studies from the chemical, biological, and semiconductor industrial areas. � Control and process engineers, and academic researchers in the process monitoring, process control and fault detection and isolation (FDI) disciplines will be interested in this book. It can also be used to provide supplementary material and industrial insight for graduate and advanced undergraduate students, and graduate engineers. 
650 # 0 |a Engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Control. 
700 1 # |a Song, Zhihuan.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781447145127 
830 # 0 |a Advances in Industrial Control,  |x 1430-9491 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4471-4513-4 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)