Robust Data Mining

Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniqu...

Full description

Bibliographic Details
Main Authors: Xanthopoulos, Petros. (Author), Pardalos, Panos M. (Author), Trafalis, Theodore B. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: New York, NY : Springer New York : Imprint: Springer, 2013.
Series:SpringerBriefs in Optimization,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-9878-1
LEADER 02699nam a22005055i 4500
001 12429
003 DE-He213
005 20130725224314.0
007 cr nn 008mamaa
008 121120s2013 xxu| s |||| 0|eng d
020 # # |a 9781441998781  |9 978-1-4419-9878-1 
024 7 # |a 10.1007/978-1-4419-9878-1  |2 doi 
050 # 4 |a QA402.5-402.6 
072 # 7 |a PBU  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 # |a Xanthopoulos, Petros.  |e author. 
245 1 0 |a Robust Data Mining  |c by Petros Xanthopoulos, Panos M. Pardalos, Theodore B. Trafalis.  |h [electronic resource] / 
264 # 1 |a New York, NY :  |b Springer New York :  |b Imprint: Springer,  |c 2013. 
300 # # |a XII, 59 p. 6 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a SpringerBriefs in Optimization,  |x 2190-8354 
505 0 # |a 1. Introduction -- 2. Least Squares Problems -- 3. Principal Component Analysis -- 4. Linear Discriminant Analysis -- 5.�Support Vector Machines -- 6. Conclusion. 
520 # # |a Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aim to create new algorithms resilient to error and noise. This work encapsulates all the latest applications of robust optimization in data mining. This brief contains an overview of the rapidly growing field of�robust data mining research field and presents �the most well known machine learning algorithms, their robust counterpart formulations and algorithms for attacking these problems. This�brief will appeal to theoreticians and data miners working in this field. 
650 # 0 |a Mathematics. 
650 # 0 |a Software engineering. 
650 # 0 |a Data mining. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Mathematics. 
650 2 4 |a Optimization. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Software Engineering/Programming and Operating Systems. 
700 1 # |a Pardalos, Panos M.  |e author. 
700 1 # |a Trafalis, Theodore B.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9781441998774 
830 # 0 |a SpringerBriefs in Optimization,  |x 2190-8354 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-1-4419-9878-1 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)