A Guide to Empirical Orthogonal Functions for Climate Data Analysis

Climatology and meteorology have basically been a descriptive science until it became possible to use numerical models, but it is crucial to the success of the strategy that the model must be a good representation of the real climate system of the Earth. Models are required to reproduce not only the...

Full description

Bibliographic Details
Main Authors: Navarra, Antonio. (Author), Simoncini, Valeria. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Dordrecht : Springer Netherlands, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-90-481-3702-2
LEADER 03311nam a22004575i 4500
001 11904
003 DE-He213
005 20130725195751.0
007 cr nn 008mamaa
008 100427s2010 ne | s |||| 0|eng d
020 # # |a 9789048137022  |9 978-90-481-3702-2 
024 7 # |a 10.1007/978-90-481-3702-2  |2 doi 
100 1 # |a Navarra, Antonio.  |e author. 
245 1 2 |a A Guide to Empirical Orthogonal Functions for Climate Data Analysis  |c by Antonio Navarra, Valeria Simoncini.  |h [electronic resource] / 
264 # 1 |a Dordrecht :  |b Springer Netherlands,  |c 2010. 
300 # # |a VI, 200p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a 1 Introduction -- 2 Elements of Linear Algebra -- 3 Basic Statistical Concepts -- 4 Empirical Orthogonal Functions -- 5 Generalizations: Rotated, Complex, Extended and Combined EOF -- 6 Cross-covariance and the Singular Value Decomposition -- 7 The Canonical Correlation Analysis -- 8 Multiple Linear Regression Methods -- Bibliography -- Index. 
520 # # |a Climatology and meteorology have basically been a descriptive science until it became possible to use numerical models, but it is crucial to the success of the strategy that the model must be a good representation of the real climate system of the Earth. Models are required to reproduce not only the mean properties of climate, but also its variability and the strong spatial relations between climate variability in geographically diverse regions. Quantitative techniques were developed to explore the climate variability and its relations between different geographical locations. Methods were borrowed from descriptive statistics, where they were developed to analyze variance of related observations-variable pairs, or to identify unknown relations between variables. A Guide to Empirical Orthogonal Functions for Climate Data Analysis uses a different approach, trying to introduce the reader to a practical application of the methods, including data sets from climate simulations and MATLAB codes for the algorithms. All pictures and examples used in the book may be reproduced by using the data sets and the routines available in the book . Though the main thrust of the book is for climatological examples, the treatment is sufficiently general that the discussion is also useful for students and practitioners in other fields. 
650 # 0 |a Geography. 
650 # 0 |a Mathematical geography. 
650 # 0 |a Meteorology. 
650 # 0 |a Computer science. 
650 # 0 |a Climatic changes. 
650 1 4 |a Earth Sciences. 
650 2 4 |a Meteorology/Climatology. 
650 2 4 |a Mathematical Applications in Earth Sciences. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Climate Change. 
700 1 # |a Simoncini, Valeria.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9789048137015 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-90-481-3702-2 
912 # # |a ZDB-2-EES 
950 # # |a Earth and Environmental Science (Springer-11646)