Bootstrapping Stationary ARMA-GARCH Models

Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to...

Full description

Bibliographic Details
Main Author: Shimizu, Kenichi. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Wiesbaden : Vieweg+Teubner, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-8348-9778-7
LEADER 02116nam a22003735i 4500
001 11521
003 DE-He213
005 20130725202608.0
007 cr nn 008mamaa
008 101031s2010 gw | s |||| 0|eng d
020 # # |a 9783834897787  |9 978-3-8348-9778-7 
024 7 # |a 10.1007/978-3-8348-9778-7  |2 doi 
050 # 4 |a QA1-939 
072 # 7 |a PB  |2 bicssc 
072 # 7 |a MAT000000  |2 bisacsh 
082 0 4 |a 510  |2 23 
100 1 # |a Shimizu, Kenichi.  |e author. 
245 1 0 |a Bootstrapping Stationary ARMA-GARCH Models  |c by Kenichi Shimizu.  |h [electronic resource] / 
264 # 1 |a Wiesbaden :  |b Vieweg+Teubner,  |c 2010. 
300 # # |a 148 p. 12 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
520 # # |a Bootstrap technique is a useful tool for assessing uncertainty in statistical estimation and thus it is widely applied for risk management. Bootstrap is without doubt a promising technique, however, it is not applicable to all time series models. A wrong application could lead to a false decision to take too much risk. Kenichi Shimizu investigates the limit of the two standard bootstrap techniques, the residual and the wild bootstrap, when these are applied to the conditionally heteroscedastic models, such as the ARCH and GARCH models. The author shows that the wild bootstrap usually does not work well when one estimates conditional heteroscedasticity of Engle s ARCH or Bollerslev s GARCH models while the residual bootstrap works without problems. Simulation studies from the application of the proposed bootstrap methods are demonstrated together with the theoretical investigation. 
650 # 0 |a Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Mathematics, general. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783834809926 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-8348-9778-7 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)