Poly-, Quasi- and Rank-One Convexity in Applied Mechanics

Generalized convexity conditions play a major role in many modern mechanical applications. They serve as the basis for existence proofs and allow for the design of advanced algorithms. Moreover, understanding these convexity conditions helps in deriving reliable mechanical models. The book summarize...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Schrd̲er, Jr̲g. (Editor), Neff, Patrizio. (Editor)
Format: Electronic
Language:English
Published: Vienna : Springer Vienna, 2010.
Series:CISM International Centre for Mechanical Sciences, 516
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7091-0174-2
LEADER 02218nam a22004455i 4500
001 11458
003 DE-He213
005 20130725201228.0
007 cr nn 008mamaa
008 100803s2010 au | s |||| 0|eng d
020 # # |a 9783709101742  |9 978-3-7091-0174-2 
024 7 # |a 10.1007/978-3-7091-0174-2  |2 doi 
050 # 4 |a TA349-359 
072 # 7 |a TGMD  |2 bicssc 
072 # 7 |a TEC009070  |2 bisacsh 
072 # 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 # |a Schrd̲er, Jr̲g.  |e editor. 
245 1 0 |a Poly-, Quasi- and Rank-One Convexity in Applied Mechanics  |c edited by Jr̲g Schrd̲er, Patrizio Neff.  |h [electronic resource] / 
264 # 1 |a Vienna :  |b Springer Vienna,  |c 2010. 
300 # # |a VIII, 362p. 39 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a CISM International Centre for Mechanical Sciences,  |v 516  |x 0254-1971 ; 
520 # # |a Generalized convexity conditions play a major role in many modern mechanical applications. They serve as the basis for existence proofs and allow for the design of advanced algorithms. Moreover, understanding these convexity conditions helps in deriving reliable mechanical models. The book summarizes the well established as well as the newest results in the field of poly-, quasi and rank-one convexity. Special emphasis is put on the construction of anisotropic polyconvex energy functions with applications to biomechanics and thin shells. In addition, phase transitions with interfacial energy and the relaxation of nematic elastomers are discussed. 
650 # 0 |a Engineering. 
650 # 0 |a Mechanics, applied. 
650 1 4 |a Engineering. 
650 2 4 |a Theoretical and Applied Mechanics. 
700 1 # |a Neff, Patrizio.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783709101735 
830 # 0 |a CISM International Centre for Mechanical Sciences,  |v 516  |x 0254-1971 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-7091-0174-2 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)