Handbook of Swarm Intelligence Concepts, Principles and Applications /

From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more.� It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective inte...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Panigrahi, Bijaya Ketan. (Editor), Shi, Yuhui. (Editor), Lim, Meng-Hiot. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Adaptation, Learning, and Optimization, 8
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-17390-5
LEADER 03140nam a22004695i 4500
001 11403
003 DE-He213
005 20130725204314.0
007 cr nn 008mamaa
008 110204s2010 gw | s |||| 0|eng d
020 # # |a 9783642173905  |9 978-3-642-17390-5 
024 7 # |a 10.1007/978-3-642-17390-5  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Panigrahi, Bijaya Ketan.  |e editor. 
245 1 0 |a Handbook of Swarm Intelligence  |b Concepts, Principles and Applications /  |c edited by Bijaya Ketan Panigrahi, Yuhui Shi, Meng-Hiot Lim.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XII, 544 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Adaptation, Learning, and Optimization,  |v 8  |x 1867-4534 ; 
505 0 # |a Part A: Particle Swarm Optimization -- Part B: Bee Colony Optimization -- Part C: Ant� Colony Optimization.-Part D: Other Swarm Techniques. 
520 # # |a From nature, we observe swarming behavior in the form of ant colonies, bird flocking, animal herding, honey bees, swarming of bacteria, and many more.� It is only in recent years that researchers have taken notice of such natural swarming systems as culmination of some form of innate collective intelligence, albeit swarm intelligence (SI) - a metaphor that inspires a myriad of computational problem-solving techniques.� In computational intelligence, swarm-like algorithms have been successfully applied to solve many real-world problems in engineering and sciences. This handbook volume serves as a useful foundational as well as consolidatory state-of-art collection of articles in the field from various researchers around the globe.� It has a rich collection of contributions pertaining to the theoretical and empirical study of single and multi-objective variants of swarm intelligence based algorithms like particle swarm optimization (PSO), ant colony optimization (ACO), bacterial foraging optimization algorithm (BFOA), honey bee social foraging algorithms, and harmony search (HS).� With chapters describing various applications of SI techniques in real-world engineering problems, this handbook can be a valuable resource for researchers and practitioners, giving an in-depth flavor of what SI is capable of achieving. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 # |a Shi, Yuhui.  |e editor. 
700 1 # |a Lim, Meng-Hiot.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642173899 
830 # 0 |a Adaptation, Learning, and Optimization,  |v 8  |x 1867-4534 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-17390-5 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)