Exact Exponential Algorithms

Today most computer scientists believe that NP-hard problems cannot be solved by polynomial-time algorithms. From the polynomial-time perspective, all NP-complete problems are equivalent but their exponential-time properties vary widely. Why do some NP-hard problems appear to be easier than others?...

Full description

Bibliographic Details
Main Authors: Fomin, Fedor V. (Author), Kratsch, Dieter. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Texts in Theoretical Computer Science. An EATCS Series,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-16533-7
LEADER 03461nam a22004935i 4500
001 11332
003 DE-He213
005 20130725202512.0
007 cr nn 008mamaa
008 101029s2010 gw | s |||| 0|eng d
020 # # |a 9783642165337  |9 978-3-642-16533-7 
024 7 # |a 10.1007/978-3-642-16533-7  |2 doi 
050 # 4 |a QA76.9.A43 
072 # 7 |a UMB  |2 bicssc 
072 # 7 |a COM051300  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
100 1 # |a Fomin, Fedor V.  |e author. 
245 1 0 |a Exact Exponential Algorithms  |c by Fedor V. Fomin, Dieter Kratsch.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XIV, 206 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Texts in Theoretical Computer Science. An EATCS Series,  |x 1862-4499 
505 0 # |a Introduction -- Branching -- Dynamic Programming -- Inclusion-Exclusion -- Treewidth -- Measure & Conquer -- Subset Convolution -- Local Search and SAT -- Split and List -- Time Versus Space -- Miscellaneous -- Conclusions, Open Problems and Further Directions -- References -- Appendix Graphs -- Index. 
520 # # |a Today most computer scientists believe that NP-hard problems cannot be solved by polynomial-time algorithms. From the polynomial-time perspective, all NP-complete problems are equivalent but their exponential-time properties vary widely. Why do some NP-hard problems appear to be easier than others? Are there algorithmic techniques for solving hard problems that are significantly faster than the exhaustive, brute-force methods? The algorithms that address these questions are known as exact exponential algorithms. The history of exact exponential algorithms for NP-hard problems dates back to the 1960s. The two classical examples are Bellman, Held and Karp s dynamic programming algorithm for the traveling salesman problem and Ryser s inclusion exclusion formula for the permanent of a matrix. The design and analysis of exact algorithms leads to a better understanding of hard problems and initiates interesting new combinatorial and algorithmic challenges. The last decade has witnessed a rapid development of the area, with many new algorithmic techniques discovered. This has transformed� exact algorithms into a very active research field. This book provides an introduction to the area and explains the most common algorithmic techniques, and the text is supported throughout with exercises and detailed notes for further reading. The book is intended for advanced students and researchers in computer science, operations research, optimization and combinatorics. � 
650 # 0 |a Computer science. 
650 # 0 |a Computer software. 
650 # 0 |a Combinatorics. 
650 # 0 |a Mathematical optimization. 
650 1 4 |a Computer Science. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Optimization. 
650 2 4 |a Combinatorics. 
700 1 # |a Kratsch, Dieter.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642165320 
830 # 0 |a Texts in Theoretical Computer Science. An EATCS Series,  |x 1862-4499 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-16533-7 
912 # # |a ZDB-2-SCS 
950 # # |a Computer Science (Springer-11645)