Algorithmic Learning Theory 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings /

This book constitutes the refereed proceedings of the 21th International Conference on Algorithmic Learning Theory, ALT 2010, held in Canberra, Australia, in October 2010, co-located with the 13th International Conference on Discovery Science, DS 2010. The 26 revised full papers presented together w...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Hutter, Marcus. (Editor), Stephan, Frank. (Editor), Vovk, Vladimir. (Editor), Zeugmann, Thomas. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Computer Science, 6331
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-16108-7
LEADER 02862nam a22005895i 4500
001 11275
003 DE-He213
005 20130725201652.0
007 cr nn 008mamaa
008 100831s2010 gw | s |||| 0|eng d
020 # # |a 9783642161087  |9 978-3-642-16108-7 
024 7 # |a 10.1007/978-3-642-16108-7  |2 doi 
050 # 4 |a Q334-342 
050 # 4 |a TJ210.2-211.495 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Hutter, Marcus.  |e editor. 
245 1 0 |a Algorithmic Learning Theory  |b 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings /  |c edited by Marcus Hutter, Frank Stephan, Vladimir Vovk, Thomas Zeugmann.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XIII, 421p. 45 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Computer Science,  |v 6331  |x 0302-9743 ; 
520 # # |a This book constitutes the refereed proceedings of the 21th International Conference on Algorithmic Learning Theory, ALT 2010, held in Canberra, Australia, in October 2010, co-located with the 13th International Conference on Discovery Science, DS 2010. The 26 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from 44 submissions. The papers are divided into topical sections of papers on statistical learning; grammatical inference and graph learning; probably approximately correct learning; query learning and algorithmic teaching; on-line learning; inductive inference; reinforcement learning; and on-line learning and kernel methods. 
650 # 0 |a Computer science. 
650 # 0 |a Computer software. 
650 # 0 |a Logic design. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Education. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Mathematical Logic and Formal Languages. 
650 2 4 |a Algorithm Analysis and Problem Complexity. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Logics and Meanings of Programs. 
650 2 4 |a Computers and Education. 
700 1 # |a Stephan, Frank.  |e editor. 
700 1 # |a Vovk, Vladimir.  |e editor. 
700 1 # |a Zeugmann, Thomas.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642161070 
830 # 0 |a Lecture Notes in Computer Science,  |v 6331  |x 0302-9743 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-16108-7 
912 # # |a ZDB-2-SCS 
912 # # |a ZDB-2-LNC 
950 # # |a Computer Science (Springer-11645)