Arithmetic Geometry Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /

Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School...

Full description

Bibliographic Details
Main Authors: Colliot-Thľn̈e, Jean-Louis. (Author), Swinnerton-Dyer, Peter. (Author), Vojta, Paul. (Author)
Corporate Author: SpringerLink (Online service)
Other Authors: Corvaja, Pietro. (Editor), Gasbarri, Carlo. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Series:Lecture Notes in Mathematics, 2009
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-15945-9
LEADER 02964nam a22005415i 4500
001 11251
003 DE-He213
005 20130725202530.0
007 cr nn 008mamaa
008 101029s2010 gw | s |||| 0|eng d
020 # # |a 9783642159459  |9 978-3-642-15945-9 
024 7 # |a 10.1007/978-3-642-15945-9  |2 doi 
050 # 4 |a QA241-247.5 
072 # 7 |a PBH  |2 bicssc 
072 # 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 # |a Colliot-Thľn̈e, Jean-Louis.  |e author. 
245 1 0 |a Arithmetic Geometry  |b Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /  |c by Jean-Louis Colliot-Thľn̈e, Peter Swinnerton-Dyer, Paul Vojta ; edited by Pietro Corvaja, Carlo Gasbarri.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 # # |a XI, 232 p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2009  |x 0075-8434 ; 
505 0 # |a Variťš presque rationnelles, leurs points rationnels et leurs dǧňřescences -- Topics in Diophantine Equations -- Diophantine Approximation and Nevanlinna Theory. 
520 # # |a Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thľn̈e Peter Swinnerton Dyer and Paul Vojta. 
650 # 0 |a Mathematics. 
650 # 0 |a Algebra. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
700 1 # |a Swinnerton-Dyer, Peter.  |e author. 
700 1 # |a Vojta, Paul.  |e author. 
700 1 # |a Corvaja, Pietro.  |e editor. 
700 1 # |a Gasbarri, Carlo.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642159442 
830 # 0 |a Lecture Notes in Mathematics,  |v 2009  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-15945-9 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)