Classical Mechanics Hamiltonian and Lagrangian Formalism /

Formalism of classical mechanics underlies a number of powerful mathematical methods that are widely used in theoretical and mathematical physics. This book considers the basics facts of Lagrangian and Hamiltonian mechanics, as well as related topics, such as canonical transformations, integral inva...

Full description

Bibliographic Details
Main Author: Deriglazov, Alexei. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-14037-2
LEADER 03204nam a22004815i 4500
001 10905
003 DE-He213
005 20130725201636.0
007 cr nn 008mamaa
008 100907s2010 gw | s |||| 0|eng d
020 # # |a 9783642140372  |9 978-3-642-14037-2 
024 7 # |a 10.1007/978-3-642-14037-2  |2 doi 
050 # 4 |a QC120-168.85 
050 # 4 |a QA808.2 
072 # 7 |a PHD  |2 bicssc 
072 # 7 |a SCI041000  |2 bisacsh 
082 0 4 |a 531  |2 23 
100 1 # |a Deriglazov, Alexei.  |e author. 
245 1 0 |a Classical Mechanics  |b Hamiltonian and Lagrangian Formalism /  |c by Alexei Deriglazov.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 # # |a XII, 388p. 40 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Sketch of Lagrangian Formalism -- Hamiltonian Formalism - Canonical Transformations on Two- Dimensional Phase Space - Properties of Canonical Transformations - Integral Invariants - Potential Motion in a Geometric Setting - Transformations, Symmetries and Noether Theorem -- Hamiltonian Formalism for Singular Theories. 
520 # # |a Formalism of classical mechanics underlies a number of powerful mathematical methods that are widely used in theoretical and mathematical physics. This book considers the basics facts of Lagrangian and Hamiltonian mechanics, as well as related topics, such as canonical transformations, integral invariants, potential motion in geometric setting, symmetries, the Noether theorem and systems with constraints. While in some cases the formalism is developed beyond the traditional level adopted in the standard textbooks on classical mechanics, only elementary mathematical methods are used in the exposition of the material. The mathematical constructions involved are explicitly described and explained, so the book can be a good starting point for the undergraduate student new to this field. At the same time and where possible, intuitive motivations are replaced by explicit proofs and direct computations, preserving the level of rigor that makes the book useful for the graduate students intending to work in one of the branches of the vast field of theoretical physics. To illustrate how classical-mechanics formalism works in other branches of theoretical physics, examples related to electrodynamics, as well as to relativistic and quantum mechanics, are included. 
650 # 0 |a Physics. 
650 # 0 |a Mathematics. 
650 # 0 |a Mathematical physics. 
650 # 0 |a Mechanics. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Physics. 
650 2 4 |a Mechanics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642140365 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-14037-2 
912 # # |a ZDB-2-PHA 
950 # # |a Physics and Astronomy (Springer-11651)