Uncertainty Theory A Branch of Mathematics for Modeling Human Uncertainty /

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from s...

Full description

Bibliographic Details
Main Author: Liu, Baoding. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Studies in Computational Intelligence, 300
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-13959-8
LEADER 03039nam a22004815i 4500
001 10888
003 DE-He213
005 20130725200922.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 # # |a 9783642139598  |9 978-3-642-13959-8 
024 7 # |a 10.1007/978-3-642-13959-8  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Liu, Baoding.  |e author. 
245 1 0 |a Uncertainty Theory  |b A Branch of Mathematics for Modeling Human Uncertainty /  |c by Baoding Liu.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a 350p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 300  |x 1860-949X ; 
505 0 # |a Uncertainty Theory -- Uncertain Programming -- Uncertain Risk Analysis -- Uncertain Reliability Analysis -- Uncertain Process -- Uncertain Calculus -- Uncertain Differential Equation -- Uncertain Logic -- Uncertain Entailment -- Uncertain Set Theory -- Uncertain Inference. 
520 # # |a Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Management information systems. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a e-Commerce/e-business. 
650 2 4 |a Business Information Systems. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642139581 
830 # 0 |a Studies in Computational Intelligence,  |v 300  |x 1860-949X ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-13959-8 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)