Adaptive Representations for Reinforcement Learning

This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own r...

Full description

Bibliographic Details
Main Author: Whiteson, Shimon. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Studies in Computational Intelligence, 291
Subjects:
Online Access:http://dx.doi.org/10.1007/978-3-642-13932-1
LEADER 03490nam a22004335i 4500
001 10880
003 DE-He213
005 20130725200831.0
007 cr nn 008mamaa
008 100709s2010 gw | s |||| 0|eng d
020 # # |a 9783642139321  |9 978-3-642-13932-1 
024 7 # |a 10.1007/978-3-642-13932-1  |2 doi 
050 # 4 |a Q342 
072 # 7 |a UYQ  |2 bicssc 
072 # 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 # |a Whiteson, Shimon.  |e author. 
245 1 0 |a Adaptive Representations for Reinforcement Learning  |c by Shimon Whiteson.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a 133p. 11 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Studies in Computational Intelligence,  |v 291  |x 1860-949X ; 
505 0 # |a Part 1 Introduction -- Part 2 Reinforcement Learning -- Part 3 On-Line Evolutionary Computation -- Part 4 Evolutionary Function Approximation -- Part 5 Sample-Efficient Evolutionary Function Approximation -- Part 6 Automatic Feature Selection for Reinforcement Learning -- Part 7 Adaptive Tile Coding -- Part 8 RelatedWork -- Part 9 Conclusion -- Part 10 Statistical Significance. 
520 # # |a This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own representations have the potential to dramatically improve performance. This book introduces two novel approaches for automatically discovering high-performing representations. The first approach synthesizes temporal difference methods, the traditional approach to reinforcement learning, with evolutionary methods, which can learn representations for a broad class of optimization problems. This synthesis is accomplished by customizing evolutionary methods to the on-line nature of reinforcement learning and using them to evolve representations for value function approximators. The second approach automatically learns representations based on piecewise-constant approximations of value functions. It begins with coarse representations and gradually refines them during learning, analyzing the current policy and value function to deduce the best refinements. This book also introduces a novel method for devising input representations. This method addresses the feature selection problem by extending an algorithm that evolves the topology and weights of neural networks such that it evolves their inputs too. In addition to introducing these new methods, this book presents extensive empirical results in multiple domains demonstrating that these techniques can substantially improve performance over methods with manual representations. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642139314 
830 # 0 |a Studies in Computational Intelligence,  |v 291  |x 1860-949X ; 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-13932-1 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)