Incremental Learning for Motion Prediction of Pedestrians and Vehicles

Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a...

Full description

Bibliographic Details
Main Author: Govea, Alejandro Dizan Vasquez. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Springer Tracts in Advanced Robotics, 64
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-13642-9
LEADER 03422nam a22004935i 4500
001 10823
003 DE-He213
005 20130725200913.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 # # |a 9783642136429  |9 978-3-642-13642-9 
024 7 # |a 10.1007/978-3-642-13642-9  |2 doi 
050 # 4 |a TJ210.2-211.495 
050 # 4 |a T59.5 
072 # 7 |a TJFM1  |2 bicssc 
072 # 7 |a TEC037000  |2 bisacsh 
072 # 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.892  |2 23 
100 1 # |a Govea, Alejandro Dizan Vasquez.  |e author. 
245 1 0 |a Incremental Learning for Motion Prediction of Pedestrians and Vehicles  |c by Alejandro Dizan Vasquez Govea.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a 160p. 35 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Tracts in Advanced Robotics,  |v 64  |x 1610-7438 ; 
505 0 # |a Part I Background -- Probabilistic Models -- Part II State of the Art -- Intentional Motion Prediction -- Hidden Markov Models -- Part III Proposed Approach -- Growing Hidden Markov Models -- Learning and Predicting Motion with GHMMs -- Part IV Experiments -- Experimental Data -- Experimental Results -- Part V Conclusion -- Conclusions and Future Work. 
520 # # |a Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use offline learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. This books presents a lifelong learning approach where motion patterns can be learned incrementally, and in parallel with prediction. The approach is based on a novel extension to hidden Markov models, and the main contribution presented in this book, called growing hidden Markov models, which gives us the ability to learn incrementally both the parameters and the structure of the model. The proposed approach has been extensively validated with synthetic and real trajectory data. In our experiments our approach consistently learned motion models that were more compact and accurate than those produced by two other state-of-the-art techniques, confirming the viability of lifelong learning approaches to build human behavior models. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Optical pattern recognition. 
650 1 4 |a Engineering. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Pattern Recognition. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642136412 
830 # 0 |a Springer Tracts in Advanced Robotics,  |v 64  |x 1610-7438 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-13642-9 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)