The Use of Ultraproducts in Commutative Algebra

In spite of some recent applications of ultraproducts in algebra, they remain largely unknown to commutative algebraists, in part because they do not preserve basic properties such as Noetherianity. This work wants to make a strong case against these prejudices. More precisely, it studies ultraprodu...

Full description

Bibliographic Details
Main Author: Schoutens, Hans. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Mathematics, 1999
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-13368-8
LEADER 02437nam a22004575i 4500
001 10759
003 DE-He213
005 20130725200931.0
007 cr nn 008mamaa
008 100716s2010 gw | s |||| 0|eng d
020 # # |a 9783642133688  |9 978-3-642-13368-8 
024 7 # |a 10.1007/978-3-642-13368-8  |2 doi 
050 # 4 |a QA251.3 
072 # 7 |a PBF  |2 bicssc 
072 # 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 # |a Schoutens, Hans.  |e author. 
245 1 4 |a The Use of Ultraproducts in Commutative Algebra  |c by Hans Schoutens.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a X, 204p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1999  |x 0075-8434 ; 
520 # # |a In spite of some recent applications of ultraproducts in algebra, they remain largely unknown to commutative algebraists, in part because they do not preserve basic properties such as Noetherianity. This work wants to make a strong case against these prejudices. More precisely, it studies ultraproducts of Noetherian local rings from a purely algebraic perspective, as well as how they can be used to transfer results between the positive and zero characteristics, to derive uniform bounds, to define tight closure in characteristic zero, and to prove asymptotic versions of homological conjectures in mixed characteristic. Some of these results are obtained using variants called chromatic products, which are often even Noetherian. This book, neither assuming nor using any logical formalism, is intended for algebraists and geometers, in the hope of popularizing ultraproducts and their applications in algebra. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Algebra. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642133671 
830 # 0 |a Lecture Notes in Mathematics,  |v 1999  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-13368-8 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)