Exploitation of Linkage Learning in Evolutionary Algorithms

One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Chen, Ying-ping. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Evolutionary Learning and Optimization, 3
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12834-9
LEADER 02718nam a22004935i 4500
001 10663
003 DE-He213
005 20130725195859.0
007 cr nn 008mamaa
008 100416s2010 gw | s |||| 0|eng d
020 # # |a 9783642128349  |9 978-3-642-12834-9 
024 7 # |a 10.1007/978-3-642-12834-9  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Chen, Ying-ping.  |e editor. 
245 1 0 |a Exploitation of Linkage Learning in Evolutionary Algorithms  |c edited by Ying-ping Chen.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a 265p. 30 illus. in color.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Evolutionary Learning and Optimization,  |v 3  |x 1867-4534 ; 
505 0 # |a Part I Linkage & Problem Structures -- Part II Model Building & Exploiting -- Part III Applications. 
520 # # |a One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of linkage. In evolutionary algorithms, linkage models the relation between decision variables with the genetic linkage observed in biological systems, and linkage learning connects computational optimization methodologies and natural evolution mechanisms. Exploitation of linkage learning can enable us to design better evolutionary algorithms as well as to potentially gain insight into biological systems. Linkage learning has the potential to become one of the dominant aspects of evolutionary algorithms; research in this area can potentially yield promising results in addressing the scalability issues. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Mathematics. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Applications of Mathematics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642128332 
830 # 0 |a Evolutionary Learning and Optimization,  |v 3  |x 1867-4534 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12834-9 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)