Intersection Spaces, Spatial Homology Truncation, and String Theory

Intersection cohomology assigns groups which satisfy a generalized form of Poincar ̌duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rat...

Full description

Bibliographic Details
Main Author: Banagl, Markus. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Mathematics, 1997
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12589-8
LEADER 02871nam a22005415i 4500
001 10619
003 DE-He213
005 20130725200453.0
007 cr nn 008mamaa
008 100623s2010 gw | s |||| 0|eng d
020 # # |a 9783642125898  |9 978-3-642-12589-8 
024 7 # |a 10.1007/978-3-642-12589-8  |2 doi 
050 # 4 |a QA564-609 
072 # 7 |a PBMW  |2 bicssc 
072 # 7 |a MAT012010  |2 bisacsh 
082 0 4 |a 516.35  |2 23 
100 1 # |a Banagl, Markus.  |e author. 
245 1 0 |a Intersection Spaces, Spatial Homology Truncation, and String Theory  |c by Markus Banagl.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XVI, 217p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1997  |x 0075-8434 ; 
520 # # |a Intersection cohomology assigns groups which satisfy a generalized form of Poincar ̌duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincar ̌duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed. 
650 # 0 |a Mathematics. 
650 # 0 |a Geometry, algebraic. 
650 # 0 |a Topology. 
650 # 0 |a Algebraic topology. 
650 # 0 |a Cell aggregation  |x Mathematics. 
650 # 0 |a Mathematical physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Quantum Field Theories, String Theory. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642125881 
830 # 0 |a Lecture Notes in Mathematics,  |v 1997  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12589-8 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)