Mutational Analysis A Joint Framework for Cauchy Problems in and Beyond Vector Spaces /

Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear s...

Full description

Bibliographic Details
Main Author: Lorenz, Thomas. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Mathematics, 1996
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12471-6
LEADER 02958nam a22005535i 4500
001 10601
003 DE-He213
005 20130725200230.0
007 cr nn 008mamaa
008 100601s2010 gw | s |||| 0|eng d
020 # # |a 9783642124716  |9 978-3-642-12471-6 
024 7 # |a 10.1007/978-3-642-12471-6  |2 doi 
050 # 4 |a QA299.6-433 
072 # 7 |a PBK  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 # |a Lorenz, Thomas.  |e author. 
245 1 0 |a Mutational Analysis  |b A Joint Framework for Cauchy Problems in and Beyond Vector Spaces /  |c by Thomas Lorenz.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XIV, 509p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1996  |x 0075-8434 ; 
520 # # |a Ordinary differential equations play a central role in science and have been extended to evolution equations in Banach spaces. For many applications, however, it is difficult to specify a suitable normed vector space. Shapes without a priori restrictions, for example, do not have an obvious linear structure. This book generalizes ordinary differential equations beyond the borders of vector spaces with a focus on the well-posed Cauchy problem in finite time intervals. Here are some of the examples: - Feedback evolutions of compact subsets of the Euclidean space - Birth-and-growth processes of random sets (not necessarily convex) - Semilinear evolution equations - Nonlocal parabolic differential equations - Nonlinear transport equations for Radon measures - A structured population model - Stochastic differential equations with nonlocal sample dependence and how they can be coupled in systems immediately - due to the joint framework of Mutational Analysis. Finally, the book offers new tools for modelling. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Differential Equations. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Biology  |x Mathematics. 
650 # 0 |a Systems theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Mathematical Biology in General. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642124709 
830 # 0 |a Lecture Notes in Mathematics,  |v 1996  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12471-6 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)