Regularity and Approximability of Electronic Wave Functions

The electronic Schrd̲inger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for each electron. Approximating these solutions...

Full description

Bibliographic Details
Main Author: Yserentant, Harry. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Mathematics, 2000
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12248-4
LEADER 02859nam a22004695i 4500
001 10550
003 DE-He213
005 20130725200158.0
007 cr nn 008mamaa
008 100528s2010 gw | s |||| 0|eng d
020 # # |a 9783642122484  |9 978-3-642-12248-4 
024 7 # |a 10.1007/978-3-642-12248-4  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Yserentant, Harry.  |e author. 
245 1 0 |a Regularity and Approximability of Electronic Wave Functions  |c by Harry Yserentant.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a VIII, 182p. 6 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 2000  |x 0075-8434 ; 
520 # # |a The electronic Schrd̲inger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for each electron. Approximating these solutions is thus inordinately challenging, and it is generally believed that a reduction to simplified models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to show readers that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The text is accessible to a mathematical audience at the beginning graduate level as well as to physicists and theoretical chemists with a comparable mathematical background and requires no deeper knowledge of the theory of partial differential equations, functional analysis, or quantum theory. 
650 # 0 |a Mathematics. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Numerical analysis. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Numerical Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642122477 
830 # 0 |a Lecture Notes in Mathematics,  |v 2000  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12248-4 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)