Generalized Bessel Functions of the First Kind

In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend...

Full description

Bibliographic Details
Main Author: Baricz, ℓrpd̀. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Mathematics, 1994
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12230-9
LEADER 02331nam a22005175i 4500
001 10546
003 DE-He213
005 20130725200513.0
007 cr nn 008mamaa
008 100623s2010 gw | s |||| 0|eng d
020 # # |a 9783642122309  |9 978-3-642-12230-9 
024 7 # |a 10.1007/978-3-642-12230-9  |2 doi 
050 # 4 |a QA351 
072 # 7 |a PBKF  |2 bicssc 
072 # 7 |a MAT034000  |2 bisacsh 
072 # 7 |a MAT037000  |2 bisacsh 
082 0 4 |a 515.5  |2 23 
100 1 # |a Baricz, ℓrpd̀.  |e author. 
245 1 0 |a Generalized Bessel Functions of the First Kind  |c by ℓrpd̀ Baricz.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XII, 200p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1994  |x 0075-8434 ; 
505 0 # |a 1. Introduction and preliminary results -- 2. Geometric properties of generalized Bessel functions -- 3. Inequalities involving Bessel and hypergeometric functions -- 4. Appendix -- References -- Index. 
520 # # |a In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions. 
650 # 0 |a Mathematics. 
650 # 0 |a Functional equations. 
650 # 0 |a Functions of complex variables. 
650 # 0 |a Functions, special. 
650 1 4 |a Mathematics. 
650 2 4 |a Special Functions. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Real Functions. 
650 2 4 |a Difference and Functional Equations. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642122293 
830 # 0 |a Lecture Notes in Mathematics,  |v 1994  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-12230-9 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)