Global Analysis of Minimal Surfaces

Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and u...

Full description

Bibliographic Details
Main Authors: Dierkes, Ulrich. (Author), Hildebrandt, Stefan. (Author), Tromba, Anthony J. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 341
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-11706-0
Description
Summary:Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of "edge-crawling" along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integrals related to the area functional. In particular, far reaching Bernstein theorems are derived. The second part of the book contains what one might justly call a "global theory of minimal surfaces" as envisioned by Smale. First, the Douglas problem is treated anew by using Teichm<U+00fc>ller theory. Secondly, various index theorems for minimal theorems are derived, and their consequences for the space of solutions to Plateauþs problem are discussed. Finally, a topological approach to minimal surfaces via Fredholm vector fields in the spirit of Smale is presented.
Physical Description:XVI, 537 p. online resource.
ISBN:9783642117060
ISSN:0072-7830 ;