The Poisson-Dirichlet Distribution and Related Topics Models and Asymptotic Behaviors /

The Poisson-Dirichlet distribution is an infinite dimensional probability distribution. It was introduced by Kingman over thirty years ago, and has found applications in a broad range of areas including Bayesian statistics, combinatorics, differential geometry, economics, number theory, physics, and...

Full description

Bibliographic Details
Main Author: Feng, Shui. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Probability and its Applications,
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-11194-5
LEADER 03015nam a22004815i 4500
001 10322
003 DE-He213
005 20130725200212.0
007 cr nn 008mamaa
008 100528s2010 gw | s |||| 0|eng d
020 # # |a 9783642111945  |9 978-3-642-11194-5 
024 7 # |a 10.1007/978-3-642-11194-5  |2 doi 
050 # 4 |a QA273.A1-274.9 
050 # 4 |a QA274-274.9 
072 # 7 |a PBT  |2 bicssc 
072 # 7 |a PBWL  |2 bicssc 
072 # 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 # |a Feng, Shui.  |e author. 
245 1 4 |a The Poisson-Dirichlet Distribution and Related Topics  |b Models and Asymptotic Behaviors /  |c by Shui Feng.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XII, 218p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Probability and its Applications,  |x 1431-7028 
505 0 # |a Preface -- Part I: Models -- 1. Introduction -- 2. The Poisson Dirichlet Distribution -- 3. The Two-Parameter Poisson Dirichlet Distribution -- 4. The Coalescent -- 5. Stochastic Dynamics -- 6. Particle Representation -- Part II: Asymptotic Behaviors -- 7. Fluctuation Theorems -- 8. Large Deviations for the Poisson Dirichlet Distribution -- 9. Large Deviations for the Dirichlet Processes -- A. Poisson Process and Poisson Random Measure -- A.1. Definitions -- A.2. Properties -- B. Basics of Large Deviations -- References -- Index. 
520 # # |a The Poisson-Dirichlet distribution is an infinite dimensional probability distribution. It was introduced by Kingman over thirty years ago, and has found applications in a broad range of areas including Bayesian statistics, combinatorics, differential geometry, economics, number theory, physics, and population genetics. This monograph provides a comprehensive study of this distribution and some related topics, with particular emphasis on recent progresses in evolutionary dynamics and asymptotic behaviors. One central scheme is the unification of the Poisson-Dirichlet distribution, the urn structure, the coalescent, the evolutionary dynamics through the grand particle system of Donnelly and Kurtz. It is largely self-contained. The methods and techniques used in it appeal to researchers in a wide variety of subjects. 
650 # 0 |a Mathematics. 
650 # 0 |a Biology  |x Mathematics. 
650 # 0 |a Distribution (Probability theory). 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Mathematical Biology in General. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642111938 
830 # 0 |a Probability and its Applications,  |x 1431-7028 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-11194-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)