Bounding Uncertainty in Civil Engineering Theoretical Background /

Taking an engineering, rather than a mathematical, approach, Bounding uncertainty in Civil Engineering - Theoretical Background deals with the mathematical theories that use convex sets of probability distributions to describe the input data and/or the final response of systems. The particular point...

Full description

Bibliographic Details
Main Authors: Bernardini, Alberto. (Author), Tonon, Fulvio. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-11190-7
LEADER 03137nam a22005055i 4500
001 10321
003 DE-He213
005 20130725195527.0
007 cr nn 008mamaa
008 100315s2010 gw | s |||| 0|eng d
020 # # |a 9783642111907  |9 978-3-642-11190-7 
024 7 # |a 10.1007/978-3-642-11190-7  |2 doi 
050 # 4 |a TA405-409.3 
050 # 4 |a QA808.2 
072 # 7 |a TG  |2 bicssc 
072 # 7 |a TEC009070  |2 bisacsh 
072 # 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 # |a Bernardini, Alberto.  |e author. 
245 1 0 |a Bounding Uncertainty in Civil Engineering  |b Theoretical Background /  |c by Alberto Bernardini, Fulvio Tonon.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a 350p. 97 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a Motivation -- Review of Theory of Probability and Notation -- Random sets and imprecise probabilities -- Random relations -- Inclusion and mappings of random sets/relations -- Approximate reasoning. 
520 # # |a Taking an engineering, rather than a mathematical, approach, Bounding uncertainty in Civil Engineering - Theoretical Background deals with the mathematical theories that use convex sets of probability distributions to describe the input data and/or the final response of systems. The particular point of view of the authors is centered on the applications to civil engineering problems, and the theory of random sets has been adopted as a basic and relatively simple model. However, the authors have tried to elucidate its connections to the more general theory of imprecise probabilities, Choquet capacities, fuzzy sets, p-boxes, convex sets of parametric probability distributions, and approximate reasoning both in one dimension and in several dimensions with associated joint spaces. If choosing the theory of random sets may lead to some loss of generality, it has, on the other hand, allowed for a self-contained selection of the topics and a more unified presentation of the theoretical contents and algorithms. With over 80 examples worked out step by step, the book should assist newcomers to the subject (who may otherwise find it difficult to navigate a vast and dispersed literature) in applying the techniques described to their own specific problems. 
650 # 0 |a Engineering. 
650 # 0 |a Engineering geology. 
650 # 0 |a Materials. 
650 # 0 |a Mechanical engineering. 
650 # 0 |a Civil engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Structural Mechanics. 
650 2 4 |a Geotechnical Engineering. 
650 2 4 |a Civil Engineering. 
700 1 # |a Tonon, Fulvio.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642111891 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-11190-7 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)