Computational Intelligence in Expensive Optimization Problems

In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include lim...

Full description

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Tenne, Yoel. (Editor), Goh, Chi-Keong. (Editor)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Adaptation Learning and Optimization, 2
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-10701-6
LEADER 03497nam a22004815i 4500
001 10288
003 DE-He213
005 20130725195423.0
007 cr nn 008mamaa
008 100309s2010 gw | s |||| 0|eng d
020 # # |a 9783642107016  |9 978-3-642-10701-6 
024 7 # |a 10.1007/978-3-642-10701-6  |2 doi 
050 # 4 |a TA329-348 
050 # 4 |a TA640-643 
072 # 7 |a TBJ  |2 bicssc 
072 # 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 # |a Tenne, Yoel.  |e editor. 
245 1 0 |a Computational Intelligence in Expensive Optimization Problems  |c edited by Yoel Tenne, Chi-Keong Goh.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a 800p. 270 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Adaptation Learning and Optimization,  |v 2  |x 1867-4534 ; 
520 # # |a In modern science and engineering, laboratory experiments are replaced by high fidelity and computationally expensive simulations. Using such simulations reduces costs and shortens development times but introduces new challenges to design optimization process. Examples of such challenges include limited computational resource for simulation runs, complicated response surface of the simulation inputs-outputs, and etc. Under such difficulties, classical optimization and analysis methods may perform poorly. This motivates the application of computational intelligence methods such as evolutionary algorithms, neural networks and fuzzy logic, which often perform well in such settings. This is the first book to introduce the emerging field of computational intelligence in expensive optimization problems. Topics covered include: Dedicated implementations of evolutionary algorithms, neural networks and fuzzy logic. Reduction of expensive evaluations (modelling, variable-fidelity, fitness inheritance). Frameworks for optimization (model management, complexity control, model selection). Parallelization of algorithms (implementation issues on clusters, grids, parallel machines). Incorporation of expert systems and human-system interface. Single and multiobjective algorithms. Data mining and statistical analysis. Analysis of real-world cases (such as multidisciplinary design optimization). The edited book provides both theoretical treatments and real-world insights gained by experience, all contributed by leading researchers in the respective fields. As such, it is a comprehensive reference for researchers, practitioners, and advanced-level students interested in both the theory and practice of using computational intelligence for expensive optimization problems. 
650 # 0 |a Engineering. 
650 # 0 |a Artificial intelligence. 
650 # 0 |a Mathematics. 
650 # 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Applications of Mathematics. 
700 1 # |a Goh, Chi-Keong.  |e editor. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642107009 
830 # 0 |a Adaptation Learning and Optimization,  |v 2  |x 1867-4534 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-10701-6 
912 # # |a ZDB-2-ENG 
950 # # |a Engineering (Springer-11647)