Conjugate Duality in Convex Optimization

This book presents new achievements and results in the theory of conjugate duality for convex optimization problems. The perturbation approach for attaching a dual problem to a primal one makes the object of a preliminary chapter, where also an overview of the classical generalized interior point re...

Full description

Bibliographic Details
Main Author: Bot, Radu Ioan. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Economics and Mathematical Systems, 637
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04900-2
LEADER 03100nam a22005535i 4500
001 10173
003 DE-He213
005 20130725194428.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642049002  |9 978-3-642-04900-2 
024 7 # |a 10.1007/978-3-642-04900-2  |2 doi 
050 # 4 |a QA402-402.37 
050 # 4 |a T57.6-57.97 
072 # 7 |a KJT  |2 bicssc 
072 # 7 |a KJM  |2 bicssc 
072 # 7 |a BUS049000  |2 bisacsh 
072 # 7 |a BUS042000  |2 bisacsh 
082 0 4 |a 519.6  |2 23 
100 1 # |a Bot, Radu Ioan.  |e author. 
245 1 0 |a Conjugate Duality in Convex Optimization  |c by Radu Ioan Bot.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XII, 164p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Economics and Mathematical Systems,  |v 637  |x 0075-8442 ; 
505 0 # |a Introduction -- Pertubation Functions and Dual Problems -- Moreau-Rockafellar Formulae and Closedness-Type Regularity Conditions -- Biconjugate Functions -- Strong and Total Conjugate Duality -- Unconventional Fenchel Duality -- Applications of the Duality to Monotone Operators. 
520 # # |a This book presents new achievements and results in the theory of conjugate duality for convex optimization problems. The perturbation approach for attaching a dual problem to a primal one makes the object of a preliminary chapter, where also an overview of the classical generalized interior point regularity conditions is given. A central role in the book is played by the formulation of generalized Moreau-Rockafellar formulae and closedness-type conditions, the latter constituting a new class of regularity conditions, in many situations with a wider applicability than the generalized interior point ones. The reader also receives deep insights into biconjugate calculus for convex functions, the relations between different existing strong duality notions, but also into several unconventional Fenchel duality topics. The final part of the book is consecrated to the applications of the convex duality theory in the field of monotone operators. 
650 # 0 |a Mathematics. 
650 # 0 |a Global analysis (Mathematics). 
650 # 0 |a Systems theory. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Operations research. 
650 1 4 |a Mathematics. 
650 2 4 |a Operations Research, Mathematical Programming. 
650 2 4 |a Operations Research/Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Systems Theory, Control. 
650 2 4 |a Analysis. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642048999 
830 # 0 |a Lecture Notes in Economics and Mathematical Systems,  |v 637  |x 0075-8442 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04900-2 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)