Abstract Parabolic Evolution Equations and their Applications

The semigroup methods are known as a powerful tool for analyzing nonlinear diffusion equations and systems. The author has studied abstract parabolic evolution equations and their applications to nonlinear diffusion equations and systems for more than 30 years. He gives first, after reviewing the th...

Full description

Bibliographic Details
Main Author: Yagi, Atsushi. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:View fulltext via EzAccess
LEADER 03010nam a22004575i 4500
001 10139
003 DE-He213
005 20130725193553.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642046315  |9 978-3-642-04631-5 
024 7 # |a 10.1007/978-3-642-04631-5  |2 doi 
050 # 4 |a QA370-380 
072 # 7 |a PBKJ  |2 bicssc 
072 # 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.353  |2 23 
100 1 # |a Yagi, Atsushi.  |e author. 
245 1 0 |a Abstract Parabolic Evolution Equations and their Applications  |c by Atsushi Yagi.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Springer Monographs in Mathematics,  |x 1439-7382 
520 # # |a The semigroup methods are known as a powerful tool for analyzing nonlinear diffusion equations and systems. The author has studied abstract parabolic evolution equations and their applications to nonlinear diffusion equations and systems for more than 30 years. He gives first, after reviewing the theory of analytic semigroups, an overview of the theories of linear, semilinear and quasilinear abstract parabolic evolution equations as well as general strategies for constructing dynamical systems, attractors and stable-unstable manifolds associated with those nonlinear evolution equations. In the second half of the book, he shows how to apply the abstract results to various models in the real world focusing on various self-organization models: semiconductor model, activator-inhibitor model, B-Z reaction model, forest kinematic model, chemotaxis model, termite mound building model, phase transition model, and Lotka-Volterra competition model. The process and techniques are explained concretely in order to analyze nonlinear diffusion models by using the methods of abstract evolution equations. Thus the present book fills the gaps of related titles that either treat only very theoretical examples of equations or introduce many interesting models from Biology and Ecology, but do not base analytical arguments upon rigorous mathematical theories. 
650 # 0 |a Mathematics. 
650 # 0 |a Differentiable dynamical systems. 
650 # 0 |a Differential equations, partial. 
650 # 0 |a Biology  |x Mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
650 2 4 |a Mathematical Biology in General. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642046308 
830 # 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |z View fulltext via EzAccess  |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04631-5 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)