Geometric Description of Images as Topographic Maps

This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morpholo...

Full description

Bibliographic Details
Main Authors: Caselles, Vicent. (Author), Monasse, Pascal. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Series:Lecture Notes in Mathematics, 1984
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04611-7
LEADER 02952nam a22004935i 4500
001 10134
003 DE-He213
005 20130725194430.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 # # |a 9783642046117  |9 978-3-642-04611-7 
024 7 # |a 10.1007/978-3-642-04611-7  |2 doi 
050 # 4 |a QA76.9.I52 
072 # 7 |a PBV  |2 bicssc 
072 # 7 |a MAT013000  |2 bisacsh 
082 0 4 |a 004  |2 23 
100 1 # |a Caselles, Vicent.  |e author. 
245 1 0 |a Geometric Description of Images as Topographic Maps  |c by Vicent Caselles, Pascal Monasse.  |h [electronic resource] / 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XVII, 192p.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
490 1 # |a Lecture Notes in Mathematics,  |v 1984  |x 0075-8434 ; 
505 0 # |a 1 Introduction -- 2 The Tree of Shapes of an Image -- 3 Grain Filters -- 4 A Topological Description of the Topographic Map -- 5 Merging the Component Trees -- 6 Computation of the Tree of Shapes of a Digital Image -- 7 Computation of the Tree of Bilinear Level Lines -- 8 Applications. 
520 # # |a This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8. 
650 # 0 |a Mathematics. 
650 # 0 |a Visualization. 
650 # 0 |a Combinatorics. 
650 1 4 |a Mathematics. 
650 2 4 |a Visualization. 
650 2 4 |a Information and Communication, Circuits. 
650 2 4 |a Combinatorics. 
700 1 # |a Monasse, Pascal.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642046100 
830 # 0 |a Lecture Notes in Mathematics,  |v 1984  |x 0075-8434 ; 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-04611-7 
912 # # |a ZDB-2-SMA 
912 # # |a ZDB-2-LNM 
950 # # |a Mathematics and Statistics (Springer-11649)