CATBox An Interactive Course in Combinatorial Optimization /

Graph algorithms are easy to visualize and indeed there already exists a variety of packages and programs to animate the dynamics when solving problems from graph theory. Still, and somewhat surprisingly, it can be difficult to understand the ideas behind the algorithm from the dynamic display alone...

Full description

Bibliographic Details
Main Authors: Hochstt̃tler, Winfried. (Author), Schliep, Alexander. (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Subjects:
Online Access:https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-03822-8
LEADER 04063nam a22005055i 4500
001 10063
003 DE-He213
005 20130725195540.0
007 cr nn 008mamaa
008 100318s2010 gw | s |||| 0|eng d
020 # # |a 9783642038228  |9 978-3-642-03822-8 
024 7 # |a 10.1007/978-3-642-03822-8  |2 doi 
050 # 4 |a QA164-167.2 
072 # 7 |a PBV  |2 bicssc 
072 # 7 |a MAT036000  |2 bisacsh 
082 0 4 |a 511.6  |2 23 
100 1 # |a Hochstt̃tler, Winfried.  |e author. 
245 1 0 |a CATBox  |b An Interactive Course in Combinatorial Optimization /  |c by Winfried Hochstt̃tler, Alexander Schliep.  |h [electronic resource] : 
264 # 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 # # |a XII, 190p. 36 illus.  |b online resource. 
336 # # |a text  |b txt  |2 rdacontent 
337 # # |a computer  |b c  |2 rdamedia 
338 # # |a online resource  |b cr  |2 rdacarrier 
347 # # |a text file  |b PDF  |2 rda 
505 0 # |a 1 Discrete Problems from Applications -- 2 Basics, Notation and Data Structures -- 3 Minimum Spanning Trees -- 4 Linear Programming Duality -- 5 Shortest Paths -- 6 Maximal Flows -- 7 Minimum-cost Flows -- 8 Matching -- 9 Weighted Matching -- A. Using Gato and Gred -- B. A Brief Introduction to Reading Python -- C. Visualizing Graph Algorithms with Gato -- References -- Index. 
520 # # |a Graph algorithms are easy to visualize and indeed there already exists a variety of packages and programs to animate the dynamics when solving problems from graph theory. Still, and somewhat surprisingly, it can be difficult to understand the ideas behind the algorithm from the dynamic display alone. CATBox consists of a software system for animating graph algorithms and a course book which we developed simultaneously. The software system presents both the algorithm and the graph and puts the user always in control of the actual code that is executed. He or she can set breakpoints, proceed in single steps and trace into subroutines. The graph, and additional auxiliary graphs like residual networks, are displayed and provide visual feedback. The course book, intended for readers at advanced undergraduate or graduate level, introduces the ideas and discusses the mathematical background necessary for understanding and verifying the correctness of the algorithms and their complexity. Computer exercises and examples replace the usual static pictures of algorithm dynamics. For this volume we have chosen solely algorithms for classical problems from combinatorial optimization, such as minimum spanning trees, shortest paths, maximum flows, minimum cost flows as well as weighted and unweighted matchings both for bipartite and non-bipartite graphs. We consider non-bipartite weighted matching, in particular in the geometrical case, a highlight of combinatorial optimization. In order to enable the reader to fully enjoy the beauty of the primal-dual solution algorithm for weighted matching, we present all mathematical material not only from the point of view of graph theory, but also with an emphasis on linear programming and its duality. This yields insightful and aesthetically pleasing pictures for matchings, but also for minimum spanning trees. You can find more information at http://schliep.org/CATBox/. 
650 # 0 |a Mathematics. 
650 # 0 |a Computational complexity. 
650 # 0 |a Combinatorics. 
650 # 0 |a Mathematical optimization. 
650 # 0 |a Operations research. 
650 # 0 |a Economics, Mathematical. 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Optimization. 
650 2 4 |a Operations Research, Mathematical Programming. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Game Theory/Mathematical Methods. 
700 1 # |a Schliep, Alexander.  |e author. 
710 2 # |a SpringerLink (Online service) 
773 0 # |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783540148876 
856 4 0 |u https://ezaccess.library.uitm.edu.my/login?url=http://dx.doi.org/10.1007/978-3-642-03822-8 
912 # # |a ZDB-2-SMA 
950 # # |a Mathematics and Statistics (Springer-11649)